Principles for 
Computer System Design

10 years ago: Hints for Computer System Design
Not that much learned since then—disappointing

Instead of standing on each other’s shoulders, we stand on each other’s toes.                                                            (Hamming)

One new thing: How to build systems more precisely

If you think systems are expensive, try chaos.
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From Interfaces to Specifications

Make modularity precise 








   Divide and conquer (Roman motto)
Design

Correctness

Documentation


Do it recursively 





Any idea is better when made recursive (Randell)


Refinement:   One man’s implementation is another man’s spec.











(adapted from Perlis)
Composition: Use actions from one spec in another.
Specifying a System with State

A safety property: nothing bad ever happens
Defined by a state machine:

state: a set of values, usually divided into named variables
actions: named changes in the state

A liveness property: something good eventually happens

These define behavior: all the possible sequence of actions

Examples of systems with state:

Data abstractions

Concurrent systems

Distributed systems

You can’t observe the actual state of the system from outside. 
All you can see is the results of actions.
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This interface was used in the Bravo editor.
The implementation was about 20k lines of code.

How to Write a Spec

Figure out what the state is

Choose it to make the spec clear, not to match the code.

Describe the actions 

What they do to the state 

What they return

Helpful hints

Notation is important; it helps you to think about what’s going on.

Invent a suitable vocabulary. 

Fewer actions are better.                                           Less is more.
More non-determinism is better; it allows more implementations.


I’m sorry I wrote you such a long letter; I didn’t have time to write a short one.                                                        (Pascal)

Reliable Messages
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Spec for Reliable Messages

q
: sequence[M]
:= < >
status
: {OK, lost, ?}
:= lost
recs/r
: Boolean
:= false  (short for ‘recovering’)


	Name
	Guard
	Effect
	Name
	Guard
	Effect

	**put(m)
	
	append m to q,
status := ?
	*get(m)
	m first on q
	remove head of q,
if q = <>, status = ? 

	*getAck(a)
	status = a
	status := lost
	
	
	   then status := OK

	lose
	recs or 
recr
	delete some element from q; 
    if it’s the last then status := lost,
or status := lost
	
	
	


What “Implements” Means?


Divide actions into external  and internal.

Y implements X if 

every external behavior of Y is an external behavior of X, and

Y’s liveness property implies X’s liveness property.

This expresses the idea that Y implements X if 
you can’t tell Y apart from X by looking only at the external actions. 

Proving that Y implements X

Define an abstraction function f from the state of Y to the state of X.

Show that Y simulates X:

1)
f maps initial states of Y to initial states of X.

2)
For each Y-action and each state y 
there is a sequence of X-actions that is the same externally,
such that the diagram commutes.
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This always works!

Delayed-Decision Spec: Example 

[image: image4.wmf]drop

(

B

)

drop

(

D

)

status

 = ?

S

e

n

d

e

r

crash

mark

(

B

)

mark

(

D

)

recover

put

(

m

)

getAck

(

a

)

q 

=

get

(

m

)

D

C

B

status

 = 

lost

q 

=

status

 = ? #

q 

=

D#

C

B#

C

R

e

c

e

i

v

e

r


The implementer wants the spec as non-deterministic as possible,
    to give him more freedom and make it easier to show correctness.

A Generic Protocol G (1)
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A Generic Protocol G (2)
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A Generic Protocol G (3)
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A Generic Protocol G (4)
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G at Work
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Abstraction Function for G

cur-q
=
<msg>
if msg ≠ nil and (lasts = nil or lasts  gr)
< >
otherwise
old-q
=
the messages in sr with i’s that are good and not = lasts 
	q
	old-q + cur-q

	status
	?
if cur-q ≠ < >


OK
if lasts = lastr ≠ nil


lost
if lasts  (gr  {lastr}) or lasts = nil


	recs/r
	recs/r


The Handshake Protocol H (1)
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The Handshake Protocol H (2)
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The Handshake Protocol H (3)
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The Handshake Protocol H (4)
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The Handshake Protocol H (5)
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The Handshake Protocol H (6)
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Abstraction Function for H

	G 
	H

	gs
	the i’s with (js, i) in rs

	gr 
	{ir} – {nil}

	sr and rs
	the (I, M) and (I, A) messages in sr and rs


news/r, lasts/r, and msg are the same in G and H

	
	

	growr(i)
	receiver sets ir to an identifier from newr

	grows(i)
	receiver sends (js, i)

	shrinks(i)
	channel rs loses the last copy of (js, i)

	shrinkr(i)
	receiver gets (ir, done)




An efficient program is an exercise in logical brinksmanship. 
                                                                             (Dijkstra)

Reliable Messages: Summary

Ideas

Identifiers on messages

Sets of good identifiers, sender’s  receiver’s

Cleanup

The spec is simple.

Implementations are subtle because of crashes.

The abstraction functions reveal their secrets.

The subtlety can be factored in a precise way.

Atomic Actions
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S

: State


	Name
	Guard
	Effect

	
	
	

	do(a):Val
	
	(S, val) := a(S)






A distributed system is a system in which I can’t get my work done because a computer has failed that I’ve never even heard of. 
                                                                                    (Lamport)

Transactions: One Action at a Time
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S
, s
: State


	Name
	Guard
	Effect

	
	
	

	do(a):Val
	
	(s, val) := a(s)

	
	
	

	commit
	
	S := s

	crash
	
	s  := S


Server Failures
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S
, s
: State


: {nil, run}
:= nil


	Name
	Guard
	Effect

	begin
	 = nil
	 := run

	do(a):Val
	 = run
	(s, val) := a(s)

	
	
	

	commit
	 = run
	S := s,  := nil

	crash
	
	s := S,  := nil


Note that we clean up the auxiliary state .

Incremental State Changes: Logs (1)
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S
, s
: State

S
= S + L
L
, l
: seq Action
:= < >
s, 
= s, 

  
: {nil, run}
:= nil


	Name
	Guard
	Effect

	begin
	 = nil
	 := run

	do(a):Val
	 = run
	(s, val) := a(s), l +:= a

	
	
	

	commit
	 = run
	L := l,  := nil

	.  .  .
	
	

	
	
	


	
	
	

	crash
	
	l := L, s := S+L, nil


Incremental State Changes: Logs (2) 
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S
, s
: State

S
= S + L
L
, l
: seq Action

s, 
= s, 

  
: {nil, run}



	Name
	Guard
	Effect

	begin, do, and commit as before
	
	

	
	
	

	
	
	

	
	
	

	apply(a)
	a = head(l)
	S := S + a, l := tail(l)

	cleanLog
	L in S
	L := < >

	
	
	

	crash
	
	l := L, s := S+L, nil


Incremental Log Changes 
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S
, s
: State

L
= L if  = com else < >
L
, l
: seq Action


=  if   ≠ com else nil

, 
: {nil, run*, commit}



	Name
	Guard
	Effect

	begin and do as before
	
	

	flush
	 = run
	copy some of l to L

	commit
	 = run, L = l
	 :=  := commit

	apply(a)
	 = commit, "
	"

	cleanLog
	head(L) in S
or  = nil
	L := tail(L)

	cleanup
	L = < >
	 :=  := nil

	crash
	
	l := < > if  = nil else L;
s := S + l,  


Distributed State and Log

Si
, si
: State


= run  if all i = run
Li
, li
: seq Action


   com if      any i = com
i , i
: {nil, run*, commit}


            and any Li ≠ < >
S, L,  are the products of the Si, Li, i

   nil    otherwise


	Name
	Guard
	Effect

	begin and do as before
	
	

	flushi
	i = run
	copy some of li to Li

	preparei
	i = run, Li=li
	i := run

	commit
	 = run, L = l
	some i :=i :=commit

	cleanLog and cleanup as before
	
	

	crashi
	
	li := < >if i = nil else Li;
si := Si + li, i i


High Availability

The  = commit is a possible single point of failure.

With the usual two-phase commit (2PC) this is indeed a limitation on availability.

If data is replicated, an unreplicated commit is a weakness.

Deal with this by using a highly available consensus algorithm for .

Lamport’s Paxos algorithm is the best currently known.

Transactions: Summary

Ideas

Logs

Commit records

Stable writes at critical points: prepare and commit

Lazy cleanup

The spec is simple.

Implementations are subtle because of crashes.

The abstraction functions reveal their secrets.

The subtlety can be added one step at a time.

How to Write a Spec

Figure out what the state is

Choose it to make the spec clear, not to match the code.

Describe the actions 

What they do to the state 

What they return

Helpful hints

Notation is important; it helps you to think about what’s going on.

Invent a suitable vocabulary. 

Fewer actions are better.                                           Less is more.
More non-determinism is better; it allows more implementations.


I’m sorry I wrote you such a long letter; I didn’t have time to write a short one.                                                        (Pascal)

Security: The Access Control Model

Guards control access to valued resources.
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Rules control the operations allowed
for each principal and object.

	Principal may do
	Operation           on
	Object

	Taylor
	Read
	File “Raises”

	Jones
	Pay invoice 4325
	Account Q34

	Schwarzkopf
	Fire three rounds
	Bow gun


A Distributed System
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Principals

Authentication:
Who sent a message?

Authorization:
Who is trusted?

Principal — abstraction of "who":

People
Lampson, Taylor

Machines
VaxSN12648, Jumbo

Services
SRC-NFS, X-server

Groups
SRC, DEC-Employees

Channels
Key #7438

Theory of Principals

	Principal says statement
	P says s


Lampson says “read /SRC/Lampson/foo”

SRC-CA says “Lampson’s key is #7438”

	Principal A speaks for B
	A => B


If A says something, B says it too. So A is stronger than B.

A secure channel:

	says things directly
	C says s


	If P is the only sender on C
	C  => P


Examples

Lampson  
=> SRC         

Key #7438
=> Lampson

Handing Off Authority

	Handoff rule: 
	If A says B => A then B => A


Reasonable if A is competent and accessible.

Examples:

SRC says Lampson  => SRC

Node key says Channel key => Node key         


Any problem in computer science can be solved 
with another level of indirection.



(Wheeler).

Authenticating to the Server
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Access Control

Checking access:

Given
a request
Q says read O 

an ACL
P may read O 

	Check that
Q speaks for P
	Q => P



Auditing

Each step is justified by 

a signed statement, or

a rule

Authenticating a Channel

Authentication — who can send on a channel.
C => P; C is the channel, P the sender.

To get new C => P facts, must trust some principal, 
a certification authority, to tell them to you.
Simplest: trust Kca  to authenticate any name:

Kca => Anybody

Then CA can authenticate channels:

Kca   says Kws 
=> WS
Kca   says Kbwl
=> bwl
Authenticated Channels: Example
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Groups and Group Credentials

Defining groups: A group is a principal; its members speak for it.
Lampson
=> SRC

Taylor    
=> SRC

. . .

Proving group membership: Use certificates.
Ksrc says Lampson => SRC
Kca  says Ksrc 
  => SRC
Authenticating a Group
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Security: Summary

Ideas

Principals

Channels as principals

“Speaks for” relation

Handoff of authority

Give precise rules.

Apply them to cover many cases.
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